DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

C Grisolia, J. Bucalossi, A Grosman and the WEST PROJECT Team

IFA & CEA JOINT SYMPOSIUM , 17 & 18 Octobre 2012 DE LA RECHERCHE À L'INDUSTR

The WEST project

WEST Project: operate a full actively cooled tungsten to minimise the technological risk and to prepare the operation of ITER

- ITER W divertor risk analysis
- WEST Implementation
- WEST Plasma Facing Components and Operation Window
- WEST as a multi plat-form device

- ITER W divertor risk analysis
- WEST Implementation
- WEST Plasma Facing Components and Operation Window
- WEST as a multi plat-form device

DE LA RECHERCHE À L'INDUSTRI

the JET example

A non actively cooled W divertor machine

The WEST Project: in support of the ITER divertor strategy

- The divertor : a key component in fusion devices for power extraction.
- Initial design : carbon on the targets for very high heat fluxes, tungsten elsewhere
- 2007-8 Project Review: full tungsten divertor for the ITER nuclear phase (in order to avoid the trapping of tritium by carbon)
- Current proposal by IO: starting with a full tungsten divertor from day 1 in conformance with ITER's cost control policy
 - Brings new scientific, technological and operational challenges

The WEST Project: in support of the ITER divertor strategy

- The divertor : a key component in fusion devices for power extraction.
- Initial design : carbon on the targets for very high heat fluxes, tungsten elsewhere
- 2007-8 Project Review: full tungsten divertor for the ITER nuclear phase (in order to avoid the trapping of tritium by carbon)
- Current proposal: starting with a full tungsten divertor from day 1 in conformance with ITER's cost control policy
- Brings new scientific, technological and operational challenges

- Cost > 100 M€
- Manufacturing: ~6 to 8 years
- Installation and commissioning in nuclear environment: ~1 year

DE LA RECHERCHE À L'INDUSTRI

2 risks types for the ITER divertor

DE LA RECHERCHE À L'INDUSTR

WEST : the "missing link"

First integral test:

Component technology at high flux + tokamak environnement

- ITER W divertor risk analysis
- WEST Implementation
- WEST Plasma Facing Components and Operation Window
- WEST as a multi plat-form device

Tore Supra assets : designed for actively cooled PFCs

- Long pulse operations pioneered at the IRFM for more than 20 years
- Fully equipped for long pulse operation
 - Superconducting toroidal coils and cryogenic plant
 - Pressurized water loops
 - 15 MW of RF heating
 - A unique capacity for non-inductive generation of plasma current (LHCD: 7 MW, 1000 s)
 - Fueling systems designed for long pulse
 - Continuous data acquisition system
 - Specific control diagnostics (IR ...)

Tore Supra Tokamak

- Several generations of carbon PFCs designed, manufactured and operated
- World record of injected/extracted energy in a tokamak (1GJ)

1 GJ Injected/Extracted on Tora Supra (>6 min pulses)

Tore Supra assets : designed for actively cooled PFCs

- Long pulse operations pioneered at the IRFM for more than 20 years
- Fully equipped for long pulse operation
 - Superconducting toroidal coils and cryogenic plant
 - Pressurized water loops
 - 15 MW of RF heating
 - A unique capacity for non-inductive generation of plasma current (LHCD: 7 MW, 1000 s)
 - Fueling systems designed for long pulse
 - Continuous data acquisition system
 - Specific control diagnostics (IR ...)

- Several generations of carbon PFCs designed, manufactured and operated
- World record of injected/extracted energy in a tokamak (1GJ)

Tore Supra is the most cost effective facility to address high heat flux / long pulse PFC issues

DE LA RECHERCHE À L'INDUSTRI

Turning Tore Supra into a facility dedicated to ITER tungsten divertor

FROM TS (LIMITER) CONFIGURATION TO THE WEST (W DIVERTOR) PROJECT

PAGE 15

- ITER W divertor risk analysis
- WEST Implementation
- WEST Plasma Facing Components and Operation Window
- WEST as a multi plat-form device

WEST representative of ITER PFCs

	WEST vs ITER	
Plasma facing Unit	Identical for high flux flat part	
Assembling technology	Identical	
Area	~14 % ITER	
Length of PFU	Scale 1/3	
Number of PFU units	~ 1/2 ITER	
Total number of tiles	~14 % ITER	
Tile geometry and shape	Identical Trapezoidal	
Thermal hydraulic conditions	Identical	

WEST SOFT Conference, A. Grosman

DE LA RECHERCHE À L'INDUSTRIE

WEST OPERATIONAL DOMAIN : FROM HIGH HEAT FLUXES TO LARGE PARTICLE FLUENCE

SCENARIO	HIGH POWER	STANDARD	HIGH FLUENCE
Plasma current	0.8 MA	0.6 MA	0.5 MA
Toroidal magnetic field	3.7 T	3.7 T	3.7 T
Plasma density	9 10 ¹⁹ m ⁻³	6 10 ¹⁹ m ⁻³	4 10 ¹⁹ m ⁻³
Total radiofrequency heating power	15 MW	12 MW	10 MW
Lower Hybrid Current Drive	6 MW	6 MW	7 MW
Ion Cyclotron Resonance Heating	9 MW	6 MW	3 MW
Plasma current flat-top duration	30 s	60 s	1000 s
Expected heat load*	6 MW/m ²	11 MW/m ³	15 MW/m ²
Expected ELM energy	51 kJ	32 kJ	26 kJ
Expected ELM frequency	59 Hz	76 Hz	77 Hz
Expected ELM load	40 kJ/m ²	52 kJ/m ²	74 kJ/m ²
Expected operation time to reach one ITER pulse particle fluence	~6 months	~2 months	~few days

 Standard: long pulse 10 MW/m²

• High fluence:

- High power:
 high performance shorter pulse
- ITER fluence within a few days (6 months of JET!)

DE LA RECHERCHE À L'INDUSTR

WEST in time for ITER

Preparing for the physics and operation of ITER W

- Possibility of maintaining plasmas over long time periods in the ITER magnetic configuration (divertor) and to study improved confinement modes « H-mode » with tungsten wall (pollution of the plasma)
- Tungsten behaviour study under high flux of the particles in a tokamak environment (intense magnetic field, very high energy particles)
- Development of tools monitoring the surface temperatures of components in a metallic environment.
- Development of tools compatible with the protection of the internal components and that will monitor the performances of the plasma in real time

WEST: a robust and renowned project & a key element in risk mitigation for ITER

• A project evaluated positively by a panel of international experts (IO, F4E, EU, China, US)

- Feasibility study (2010)
- Conceptual design phase (2011)

"The CEA/IRFM team plays an exceptional role for ITER, moving even closer to ITER objectives with the WEST project, contributing to steady state physics and technology." Professor F. Wagner, IPP Greifswald; Germany.

« WEST would undoubtedly offer ITER substantial benefit in terms of risk mitigation concerning the divertor material and operational strategy, provided the platform can be implemented in the proposed timescale. » Pr Motojima, Head of IO

- ITER W divertor risk analysis
- WEST Implementation
- WEST Plasma Facing Components and Operation Window
- WEST as a multi plat-form device

WEST: a multi-purpose platform

A structuring tool

Brings the scientific community together around a relevant instrument

Prepares for the operation of ITER in fields of unique competence in Europe (cooled W components, long pulses, superconductivity) « ITER Generation »

Industrial qualification

A platform designed for the **validation of industrial components** destined for ITER and other projects (mirrors, diagnostics, heating systems...)

A collaboration open to the international community

- Laboratories of the FR-FCM
- European collaborators
- ITER partners (JA, CN, US ...)

- PFC coating
- Diagnostic for program achievements
- Safety issues:
 - Fuel trapping and control
 - Dust open issues (collection, analysis)

Conclusions

Minimize risks of ITER divertor procurement and operation Transform Tore Supra into WEST platform offered for collaboration to the ITER partners

(Domestic Agencies, Industry, Fusion Community)